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Abstract

Connectionist Temporal Classification (CTC) has recently
shown improved efficiency in LVCSR decoding. One popu-
lar implementation is to use a CTC model to predict the phone
posteriors at each frame which are then used for Viterbi beam
search on a modified WFST network. This is still within the
traditional frame synchronous decoding framework. In this pa-
per, the peaky posterior property of a CTC model is carefully
investigated and it is found that ignoring blank frames will not
introduce additional search errors. Based on this phenomenon,
a novel phone synchronous decoding framework is proposed.
Here, a phone-level CTC lattice is constructed purely using the
CTC acoustic model. The resultant CTC lattice is highly com-
pact and removes tremendous search redundancy due to blank
frames. Then, the CTC lattice can be composed with the s-
tandard WEST to yield the final decoding result. The pro-
posed approach effectively separates the acoustic evidence cal-
culation and the search operation. This not only significantly
improves online search efficiency, but also allows flexible a-
coustic/linguistic resources to be used. Experiments on LVC-
SR tasks show that phone synchronous decoding can yield an
extra 2-3 times speed up compared to the traditional frame syn-
chronous CTC decoding implementation.

Index Terms: LVCSR, Decoder, CTC, DLSS, WFEST, Lattice

1. Introduction

Large vocabulary continuous speech recognition (LVCSR) is
both a pattern recognition and search problem[1], while speech
recognition errors come from both sides, called modeling error
and search error respectively. The search process of a speech
recognizer is to find a sequence of labels whose correspond-
ing acoustic and language models best match the input feature
so as to minimize the search error. Such kind of search algo-
rithms can mainly be divided into two types, breadth-first style
time synchronous beam search and depth-first style stack de-
coding (A* search). As the heuristic function for A* search is
very hard to be obtained in LVCSR[2], the beam search method
has dominated for decades. However, beam search is also of
its weakness in wasting efforts on unpromising paths in each
time frame (frame synchronous decoding). To solve this prob-
lem, WEFST([3] is proposed to offline combine different knowl-
edge sources(acoustic and language models, etc) and perform
search space optimization to achieve best searching efficiency
in advance[4][5]. Runtime beam pruning is conducted on all
decoding paths [6], which is the main source of search error in
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this framework. Especially in context-dependent state-tying a-
coustic models[7], which leads to larger search space (compiled
as HCLG with WFSTs), the search errors becomes even more
critical because of applying harder pruning to reduce exhaustive
search in real time decoder.

Connectionist temporal classification (CTC) [8] has been
proposed as a new type of acoustic model in LVCSR and
achieves state-of-the-art performance[9][10][11]. Besides, con-
text independent phonemic CTC (CI-phone-CTC) model also
shows competing performance compared with context depen-
dent state clustering neural network (NN) HMM (CD-state-
HMM) model[11][12][13][14]. With blank symbols inserted
between labels, CTC constructs frame-level paths as intermedi-
ate representations to connect frame-level network outputs with
label sequences[13]. The outputs from a CTC-trained model
display a highly peaky distribution, while the majority of frames
have the blank as their labels[12]. Due to this characteristic-
s, when speech waveform is in the span of blank, any network
traverse becomes redundancy because linguistic search space
cannot change during that span. After the blank span, linguistic
search space changes with the acoustic information from next
phonemic span. At that time, network traverse should be contin-
ued. Such characteristics is named as discontinuous linguistic
search space (DLSS) phenomenon of CTC-trained model and
is further analyzed in Section 2.1.

In this paper, the potential of DLSS phenomenon in CTC-
trained model can be utilized by removing tremendous search
redundancy due to blank frames. Such process can also be
viewed as a variant of variable frame rate analysis[15], frame
skipping [16] or frame selection method[17]. However, the key
difference is that all technologies listed are based on raw fea-
ture selection and result in limited improvement in decoding
efficiency, while the proposed method applies skipping on a
higher level. In this way, frame synchronous decoding is trans-
formed into phone synchronous decoding. Section 2 formulates
the phone synchronous decoding derived from former frame
synchronous decoding and describes the empirical method to
apply phone synchronization into decoding framework using
the CTC lattice, a compact preserver for acoustic search space.
The experiments in Section 3 show a great speedup effect of
phone synchronous decoding and its extensibility in applying
larger and more complex language model, with competing per-
formance compared to other context dependent systems. The
paper concludes with Section 4.

2. Phone Synchronous Decoding
2.1. From Frame Synchronization to Phone Synchroniza-
tion
In LVCSR, decoding is referred to the task of finding the best
word sequence. By applying dictionary and language model to
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transform word sequence to CTC labeling, the decoding formu-
la in CTC-trained model is derived as (3)

w' = argmax{ P(w)p(x|w)}

= argvrglax{P(W p(x|lw)} €]
= argglax{pi(lw;}((l)j( )} 2)
= argjvnax{ ]]j((l‘::)) n%ixp(lw|x)} 3)

The notaions are all listed in Table 1. Here, mono-phone CTC
is taken as an example (the CTC label becomes phone label).
Besides, p(lw) in (2) is the prior probability of phone labels,
which can be ignored for not being related to latter derivation.

Table 1: Notations of CTC Decoding

Notation | Meaning
w | word sequence
w™ | best word sequence
x | feature sequence
t,t' | time frame
7,7 | the j-th phone label in sequence
L | phone set
L' | LU {blank}
B: L' — L | map from decoding path to CTC label sequence
yt | the activation of NN output unit k at time ¢
w1+ | frame-wise decoding path, from frame 1 to t
m1.; | phone-wise decoding path, from phone 1 to j
1 | phone label sequence
1w | phone sequence corresponding to w in dictionary

For a certain CTC labeling, forward probability is defined
and approximated as in [8]

t
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Therefore, (3) can be transformed to frame synchronous
viterbi beam search as below,

P(w)

(lw) 7T7r€L’ (71'1 )=lw
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w

By this way, network traverse is done for each frame in an over-
all optimized search space [5].

(5) reveals the DLSS phenomenon discussed in Section 1,
that s = blank doesn’t change the output of B(m1.¢), there-
fore, the linguistic search space is unchanged without it. And
for acoustic information, if all competing paths share the same
span of blank frames, ignoring those parts of blank score does-
n’t change(with softmax layer in model, the score is around 1).
In this way, common blank time index w is defined as (6),

(6)

Therefore, blank terms from (7) can be removed and changed
into (8)

U= {u:ypiant =1}
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As search iteration in (8) is regarding to j, which is the num-
ber of output phones (j = t — |U|), therefore, based on DLSS
phenomenon, frame synchronous viterbi beam search has been
transformed to phone synchronous viterbi beam search.

Algorithm 1 for phone synchronous decoding is summa-
rized as below. Here, S and E are start and end node for the
search space. () preserves the active tokens. 7' is the time
frame number and B preserves decoding path. The effect of
called functions are as comment.

Algorithm 1 Phone Synchronous Viterbi Beam Search(S, E, Q,
T

I Q« S

2: for each ¢ € [1,7] do

> initialization with start node
> frame-wise NN Propagation

3 F + NN Propagate(t)

4 if lisBlankFrame(F’) then > phone-wise WEST search
5: Q=frameSynchronousViterbiBeamSearch(F, Q)

6: end if

7: end for

8: B «+ finalTransition(E, S, Q) > to reach end node
9: backtrace(B)

The main differences between frame synchronous decoding
(FSD) and phone synchronous decoding (PSD) is the Decoding
Interval. In FSD, WFST network traverse is done in an equal in-
terval (even multiframe deep neural networks decoding [18] tra-
verses linguistic search space by longer but still equal interval)
However, in PSD, the decoding interval is self-adjusting (smart
and without performance deterioration) to remove tremendous
search redundancy due to blank frames, which brings about ef-
ficiency in both decoding and lattice generation.

2.2. Search Space and Decoding Error Analysis

In phone synchronous viterbi beam search, there’s no loss in
search space compared to frame synchronization, which has
been proved in Section 2.1. On the other hand, compared to
frame synchronous decoding, the number of search iterations
in linguistic search space is greatly reduced, because of a large
quantities of blank labels (frame with the output of blank) in
the decoding path of CTC-trained model . Suppose blank rate
A for a certain utterance is defined as,

#{U}

t

A= )
Here function #{-} is to count the number of the input. U is
defined in (6) and ¢ is the number of frames in the utterance.
The average percentage of remaining active acoustic candidates
in all model units is defined as 3. Then the total theoretical
compression rate defined as below,

R=1-(1-)\)x§8

In general, A is usually greater than 0.8, while 3 is around 0.1.
Therefore, the compression in search space is effective. More
quantitative statistics are given in Section 3.3.

(10)
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Figure 1: CTC Lattice Example

Thanks to the tremendous reduction in active tokens, a
wider beam can be used to achieve a better performance. That’s
another superiority of phone synchronous decoding over frame
synchronization.

2.3. the CTC Lattice - an Empirical Method to Apply
Phone Synchronization into Decoding

2.3.1. Phone Lattice Generation - Extremely Compact Acoustic
Information Preserver

Provided the discussion before, CTC lattice is proposed, as a
preserver of phone level acoustic information. CTC lattice can
fulfill the search optimization advantage in Section 2.2, while
providing compact and flexible form for further utilization.

Figure 1 is an example of CTC lattice in WFST form. Sup-
pose phone level acoustic information is as Table 2 (only re-
maining posteriors larger than 0.1 for instance) Then WFST can
be built with ’sausage” style that each span between two phone-
mic frames is built by arcs with each phone as WFST output la-
bel and its negative acoustic score as arc weight, while the input
label is all set to < eps > so that further WFST optimization
operation can be done.

Table 2: Acoustic Information of CTC Lattice Example

[ Time | phone:score |
04s | <blk>:02 a2:0.5 a4:0.2
09s | <blk>:0.3 al:0.6
1.5s | ab:0.3 ail:0.2 ai3:0.2

CTC lattice is extremely compact in acoustic informa-
tion compression compared to frame level posterior distribu-
tion and can be applied in both knowledge integrated de-
coding architecture[19][4] and multi-layerd modular decoding
architecture[20][21].

2.3.2. From Phone Lattice to Word Level Lattice - Flexible Dic-
tionary Composition

In order to integrate linguistic information into phone syn-
chronous decoding, a dictionary is used to map the phone se-
quence to the word sequence. The pipeline of this procedure
is

W <+ epsremoval(PoT o L) 11)

Here, P is CTC lattice and L is lexicon WFST built from dic-
tionary. 1" is designed to filter out blank label and repeating
phone label as in [12]. Because there are many epsilon labels in
P, epsilon removal [4] is done on the composition result. Final-
ly, P is transformed to word lattice W and ready for applying
language model.

2.3.3. Language Model Composition - Changeable Linguistic
Search Space

After transforming from phone level lattice to word level lattice,
it’s trivially to apply different types of language models by the
lattice rescoring process. For example, n-gram composition[22]
and RNN lattice rescoring[23].

1925

3. Experiment
3.1. Experimental Setup

The experiments are conducted on both English and Mandarin.
In training stage, the procedure and configuration is similar to
[13]. The details of dataset are listed in Table 3.

Table 3: Details of Training Setup

‘ Dataset | Language | Size (hours) ‘ LM ‘
Switchboard[24] English 309 standard SWB
CN 300h Mandarin 300 CN 1.7GB
CN 5000h Mandarin 5000 CN 1.7GB

Here standard SWB refers to the tri-gram standard lan-
guage model from Switchboard without interpolation with oth-
er sources, and CN 1.7GB refers to a tri-gram language model
trained by [25] with //8K words.

In the test stage, all experiments are conducted on Intel(R)
Xeon(R) CPU E5-2690 v2 @ 3.00GHz. Besides the hub5e00
testset from Switchboard and a Mandarin testset, CN Cell-
Phone, is used, which is recorded in several speech scenarios
and with more than 16,000 utterances (about 25 hours).

3.2. Error Rate & Decoding Time Comparison Between CD
& CI Modeled by HMM & CTC

In the former discussion, it is assumed that CI-phone-CTC mod-
el is competing with CD-state-HMM model, which is one of
the basis for phone synchronous decoding. In this part, a se-
ries of experiments, including different languages and training
data sizes, are conducted to fully testify it. And models are all
trained with similar number of parameters.

Table 4: Performance Comparison between CIl-phone-CTC &
CD-state-HMM. CER / WER refers to character / word error
rate and RTF refers to real-time factor in decoding

Context Acoustic CER/

Task Dependency| Model WER RTF

CD dnn-hmm 18.3 0.27

Switchboard CD Istm-hmm 15.9 0.29
CI Istm-ctc 20.7 0.044

CD dnn-hmm 16.88 0.31

CN 300h CD Istm-hmm 13.76 0.34
CI Istm-ctc 14.60 | 0.046

CD dnn-hmm 13.30 0.32

CN 5000h CI Istm-ctc 10.20 | 0.044

As Table 4 displays, our result is compatible with
[11][12][13][14], that with 300 hours data, performance is sim-
ilar between Cl-phone-CTC and CD-state-HMM, while wtih
5000 hours, CI-phone-CTC becomes more competing. There-
fore, latter experiments are held on CI-phone-CTC models.

3.3. Search Space Comparison between Frame Syn-
chronous and Phone Synchronous Decoding

To prove the analysis in Section 2.2 and fulfill the room of im-
provement between frame synchronous and phone synchronous
decoding, statistics are conducted on both blank rate A (defined
in Section 2.2) from force-aligned [26] CTC paths, and average
acoustic active rate 3 by backtracing after Viterbi search. Final-
ly, the theoretical compression rate R is gotten. All results are
listed in Table 5



Table 5: Search Space Statistics

[ tesset [ M%) [ B(%) | R(%) ]
Switchboard 88 5 994
CellPhone 87 11 98.6

In the experiment, )\ reveals the rate of network traverse
reduction which is directly related to decoding speed, while R
reveals the rate of acoustic information compression which is
related to compactness of CTC lattice in preserving acoustic
search space. For the latter, it means CTC lattice only keeps
around 1% of acoustic information from LSTM propagation by
each frame. Results of both indicators are impressive.

3.4. Extremely Fast Phone Synchronous Decoding
3.4.1. Experiments on Decoding Speedup

Experiment results on phone synchronous decoding (PSD) are
listed in Table 6, with the most popular CTC implementation
(FSD) [12] as the baseline.

Table 6: Phone Synchronization Compared with Frame

testset | Sync \CNEEl;/ S-RTF RTF ?gl?ej:s
Switch- | Phone 20.8 | 0.0082 | 0.017(2.6X) 431(-78%)
board Frame 20.7 0.035 0.044 1947
Cell- Phone 10.1 0.0072 | 0.016 (2.75X) | 388 (-81%)
Phone Frame 10.2 0.035 0.044 2042

Result shows that, there’s no ASR performance degradation
in phone synchronous decoding, while achieving 2-3X speedup
compared with common CTC implementation[12], and around
30X speedup compared with popular CD-state-NN-HMM|[27]
in Section 3.2. As decoding time includes neural network prop-
agation time and WFST search time, while phone synchronous
decoding mainly speedup the latter one, WFST search time di-
vided by waveform length is individually listed as S-RTF in the
table, which reveals 4-5X speedup in it. Besides, the decreasing
number of active tokens is parallel with both S-RTF in the table
and A in Table 5, which is reasonable.

Our recent research on phone synchronous decoding also
shows efficiency in CD-phone-CTC model[9], which achieves
similar speedup rate and compression rate as Table 5 and Ta-
ble 6, with no loss in ASR performance, compared with frame
synchronous decoding.

3.4.2. Experiments on Speed Robustness

In another experimental setup, language model is scaled up to
test the robustness of speedup (extendibility of more complex
linguistic search space) from frame to phone synchronous de-
coding. To make comparison in LM search space clear, n-gram
model is chosen, but the result can also extend to other language
model like RNN[28]. In WFST-based decoder, RTF shows n-
early linear relationship with average number of active token
(NAT) [22][5], so NAT is taken to measure the speed of decod-
ing.

Figure 2 shows that NAT of phone synchronous decoding
in CI-phone-CTC is almost unchanged with the growing size of
language model ( it is regarded as growing LM search space).
In the same experiment, NAT of CD-state-NN-HMM system is
always far more than phone synchronous decoding, especially
when LM scales up. Besides, NAT of frame synchronous de-
coding in CI-phone-CTC is also growing distinctly faster com-
pared with phone synchronous decoding.

1926

Active Tokens
7000

=¢=CTCPSD ====DNN

//

CTCFSD

6000

5000

4000

3000

2000

1000

LM Size
= . (mB)
10000

o Sl -
0 — ——

1 10

100 1000

Figure 2: LM scale-up v.s. active tokens on phone/frame syn-
chronous decoding
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Figure 3: LM scale-up v.s. CER on phone/frame synchronous
decoding

3.4.3. Overall Consideration of CER, Speed and Robustness

Regarding to CER, all systems above perform better with LM s-
caling up, while there’s a small gap between CI-phone-CTC and
CD-state-NN-HMM systems all the time. The performance of
Phone and frame synchronous CI-phone-CTC system are very
similar, which is reasonable for what have been testified in Ta-
ble 6.

Besides, 1-pass (CTC-PSD CER in the figure) and 2-
pass(CTC 2-Pass in the figure, LM size is the size of rescor-
ing LM in 2-Pass decoder, while 1-Pass LM size is fixed) de-
coding of CI-phone-CTC systems is compared. Result shows
that CER improvement in the latter is perceptibly smaller. The
reason is that with less NAT, the word lattice generating from
CI-phone-CTC decoding is smaller, which brings about worse
oracle CER.

Therefore, compared to other frame synchronous system,
it’s more suitable to directly apply larger or more complex lan-
guage model to 1-Pass phone synchronous decoder, which can
bring about better performance with almost no deceleration in
decoding speed.

4. Conclusions
In this paper, frame synchronous decoding is transformed into
phone synchronous decoding, which can be viewed as a hy-
brid decoding framework of beam search and A* search for
its self-adjusting decoding interval (smart and without perfor-
mance deterioration) to remove tremendous search redundancy
due to blank frames from CTC-trained model. Experiment re-
sult shows extra 2-3 times speed up compared to the tradition-
al frame synchronous CTC decoding implementation[12]. Be-
sides, the resultant CTC lattice as a extremely compact acous-
tic information preserver, shows great extensibility in applying
larger and more complex language model.
Future work will be integrating CTC lattice with more
knowledge sources, e.g., phonemic error model[29], prosody
model[30] and more complex language model[23][31][32].
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