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Abstract—Deep Neural Network (DNN), which can model
hierarchical and complex relationship between input and output
layer has recently been applied in speech synthesis. However, it
is remained uncertain why DNN outperform traditional HMM-
based synthesis. This paper describes several implementation
details of DNN-based speech synthesis system and compares
different impacting factors, e.g, F0 modeling method and adding
BAP feature. DNN-based system are further investigated and
in particular Continuous F0 HMM (CF-HMM) is taken as
the baseline to compare with DNN-based system, as it has
more similar input and output features with DNN-based system.
Results show the ability of FO modelling is similar between two
systems, while CF-HMM system performs better. It seems that
CF-HMM carefully strengthens the model by many technology,
while using DNN to model F0 is still rough and needs more
research. Another experiment shows that CF-HMM also does
better in mcep modelling which needs to be further investigated.

Keywords— Speech Synthesis, DNN, MSD-HMM, CF-HMM

I. INTRODUCTION

Recently, Hidden Markov Model (HMM) based speech syn-
thesis has become the most popular technology in the field [1]
. In such system, fundamental frequency (F0), Mel-Cepstral
spectral coefficients(Mcep) and Band aperiodical component
(BAP) [2] are used as acoustic features of speech. To keep
synchronization between spectral parameters andFQ param-
eters, they are modeled simultaneously by separate streams
in a multistream HMM [3], which uses different state output
probability distributions for modeling individual parts of the
observation vector. In traditional model, multispace probability
distributions [4] are used to model the FO parameters, which
use a continuous distribution for voiced frames and a discrete
distribution for unvoiced frames. By switching the continuous
and discrete space according to the space label associated
with each observation, it can model FO observation vector
sequences in a multispace [5]. According to [6], Multi-
space Probability Distribution HMM (MSD-HMM) has many
disadvantages in FO modeling, therefore, an improved Contin-
uous FO HMM (CF-HMM) [7] was proposed to solve them
by continuous FO modeling. Besides, many other methods
to solve common over-smoothing problem in HMM-based
speech synthesis have been proposed and work reasonably

This work was supported by the Program for Professor of Special Appoint-
ment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the China
NSFC project No. 61222208, JiangSu NSF project No. 201302060012 and
NICaiA project.

effectively in statistical parametric speech synthesis, e.g, pa-
rameter generation algorithm considering Global Varience [8],
there are still some limitations [9]. In case of shortcomings,
Deep Neural Network was applied as the generative model in
speech synthesis system.

Deep Neural Network (DNN), which can model a hierar-
chical, intricate relationship between input and output layer,
with a deep-layered structure, has recently been successfully
applied in speech recognition [10]. As the inverse of such
process, speech synthesis system with DNN as the generative
model was built by a few research groups. Zen, et al. [9]
analyzed the limitations of the conventional HMM-based
approach and used DNN to overcome these limitations for
speech synthesis. It is concluded that DNN-based system,
which models the relationship between input linguistic features
and their corresponding acoustic features, can outperform the
HMM-based approach. Besides, Deep Belief Network (DBN)
with stacked, Restricted Boltzmann Machines (RBMs) [10]
is used to model joint distribution of linguistic and acoustic
features for speech synthesis to reduce over-fitting for the
discriminative fine-tuning phase by modeling the structure in
the input data as generative pre-training and finding a region
of the weight-space [11]. In addition, RBM is directly used
to represent the distribution of the spectral envelopes at each
HMM state and has been revealed that RBM is better than
GMM-HMM which results in a better voice quality in RBM-
based speech synthesis [12].

In these DNN-based methods, the key differences between
them and the traditional HMM-based method includes model
frameworks and its training stages, acoustic feature modeling
and organization, and output feature parameter generation
methods. With these differences, it is remained uncertain
why DNN-based speech synthesis performs better than GMM-
HMM speech synthesis:

e In [9], many implementation details haven’t been dis-
cussed and compared carefully, which can inevitably
impact the whole system performance, e.g., the training
aspects of DNN [13], the input and output features design,
their extraction and preprocessing.

o The previous analysis of DNN-based system performance
mainly concerns about naturalness and simply compares
the output features from two different system, which is
far from thorough analysis of what DNN-based system
can actually enhance.

e The comparison between MSD-HMM and DNN seems
unreasonable because the output features of these two
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system are not the same (discrete FO modeling v.s.
continuous FO modeling).

In the paper, implementation details of DNN-based speech
synthesis system following framework of [9] is discussed
and different methods are tested by comparison experiments.
The performance gain and weakness of DNN-based system
are further investigated and CF-HMM system [7] is taken as
the baseline to compare with DNN-based system, because of
its more similar input features and output features with DNN-
based system.

The rest of the paper is arranged as follows. Section III
outlines the differences between discontinuous and continuous
FO modelling approaches for HMM-based speech synthesis.
Section II describes the detail of system implementation and its
performance analysis. Section IV presents experiment results
of performance gain and model weakness analysis. Finally,
section V suggests future work and concludes the paper.

II. DNN-BASED SPEECH SYNTHESIS

A. Framework of DNN-based speech synthesis system

Deep Neural Network (DNN), which can model hierarchical
structures between linguistic full context labels and acoustic
waveform parameters, was applied in the speech synthesis
system. Figure 1 shows a 3-hidden-layer Deep Neural Net-
work, which is the most commonly used structure in this paper
and the whole framework of a DNN-based speech synthesis
system is similar to HMM-based system except this mapping
between input and output features. In DNN-based speech
synthesis system, rich contexts are used as input feature. The
input features include linguistic binary answers of context
information and numeric values of context number, position
and duration, etc. [9]. All the linguistic values are packed into
a long vector frame-by-frame as the input features. Then the
input features are mapped to output features by a trained DNN
using forward propagation. The output features are acoustic
features like spectral envelope and fundamental frequency (f0).
Their dynamic features [14] are also included in the output
vector. Besides, a dim of output feature was used to label
whether the current frame is voiced or unvoiced (V/UV). Input
features and output features are time-aligned frame-by-frame
by a MSD-HMM models [6] . The weights of DNN are trained
by minimize the errors between the mapped output from a
given input feature vector and the target output vector.
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Fig. 1. An example of 3-hidden-layer Deep Neural Network

In synthesis, the input text is converted first into input
feature vector through the text analysis and traditional HMM-
based model is used to get duration [1], then input feature
vectors are mapped to output vectors by a trained DNN using
forward propagation. By setting the predicted output features
from the DNN as mean vectors and pre-computing global
variances of output features from all training data, the speech
parameter generation algorithm [8] can generate smooth tra-
jectories of speech parameter features which satistify both the
statistics of static and dynamic features. Finally, a waveform
synthesis module can output the synthesized waveform.

B. Implementation detail discussion

The implementation detail of DNN synthesis system has-
n’t been discussed in detail in [9]. However, nearly all
components of the system can inevitably impact the whole
performance. Therefore, this paper discusses several details
below, in order to build a better performance DNN-based
system.

1) Input Feature and its preprocessing: The input feature
to represent linguistic information of each frame contains 2
parts of content:

« Binary features for categorical contexts, e.g., phone label-
s, POS labels of the current word, and TOBI labels. Each
dim of such labels should be converted to a long vector to
represent it. For example, first five and 26th dims of the
linguistic features represent the phone information of the
context. Since the size of phone set in our text analyser
is 42, each dim of such labels is converted to a vector of
42 dims and the dim represents the corresponding phone
label is set to value 1, while the other dims are set to
value 0.

o Numerical features for the numerical contexts, e.g., the
number of words in the phrase or the position of current
frame in the current phone. Each dim of such labels
can be converted to one dim of input features, after
normalization.

Besides, the modeling unit of DNN is state, same as HMM-
based system, so the state of the current full context label
should also be taken into account. The state level information
obtained from force-alignment include 5 different values, {S2,
S3, S4, S5, S6}. Therefore, the state information is converted
to a vector of 5 dims, with one dim set to value 1 to represent
the current state and the other set to value 0. After data
preprocessing, all the converted values and vectors are joint
together to form a long vector frame by frame, containing all
linguistic information and packed for DNN input layer.

2) Output Feature extraction and data preprocessing: The
out acoustic feature includes 4 parts below:

o Spectral envelop parameters and their time derivatives.
The first and second derivative of speech parameter
vector sequence form the dynamic feature vectors for a
smoother parameter generation. For better trained DNN
performance, all three vector sequences (static, delta and
delta-delta) should be normalized to zero mean and unity
variance.

o Fundamental frequency (FO) parameters and their time
derivatives. To model log FO sequences by a DNN, the

578


Mac
文本框


continuous FO modeling approach [15] was used. In
this approach, FO observations in unvoiced regions can
be determined by 1-best selection or SPLINE interpo-
lation [16]. Since SPLINE interpolation might lead to
tighter variance which means a better trajectory mod-
elling in V/UV boundary regions [6] , such method is
used in feature extraction. All thress FO-related vector
sequences should also be normalized after transforming
to logarithmic form.

e V/UV index label. Because FO is modelled in continuous
stream, there’s another dim needed to specify the V/UV
state of each frame for parameter generation.

o Band aperiodical component (BAP) parameters and their
time derivatives. Aperiodicity parameters [2] and FO are
used to generate the source signal for synthetic speech by
controlling relative noise levels and the temporal envelope
of the noise component of the mixed mode excitation
signal. This mixed excitation model has been shown to
give significant improvements in the quality of HMM-
based synthesized speech [17] . Therefore, such acoustic
features are also taken into DNN output features after
normalization.

The output acoustic parameters are packed together as a
long vector frame by frame and aligned with the input features,
for the DNN output layer.

3) Training of DNN: The DNN is trained using stochastic
gradient ascent algorithm with momentum to small mini-
batches of training cases [10] . One iteration of gradient
descent updates the parameters W,b as follows:

Wij = Wi = agip; C(W,0) M
b; =b; — aa%iC(VV, b) 2)

where C'(W,b) is the cost function and « is the learning
rate predefined. Besides, it is more efficient to compute the
derivatives on a small, random “minibatch” of training cases,
rather than the whole training set, before updating the weights
in proportion to the gradient [10]. This stochastic gradient
descent method can be further improved by using a momentum
coefficient € [10], that smooths the gradient computed for
minibatch below.

AWU‘ (f) = €AWij (t - 1) — QWO(W b) (3)

C(W,b) includes two kinds of criterion. Acoustic parameter
determination is a regression problem. The commonly-used
criterion in DNN training of that part is mean squared error.
However, determining V/UV index is a classification prob-
lems. Therefore, Cross-entropy is used as the criterion of its
training. In case of over-fitting in DNN training, 10% of the
total data is chosen as the test set in the training process
to measures the discrepancy between target vectors and the
predicted output from updated model. According to [13],
random initialization of DNN model is chosen. Three hidden
layers with 512 or 1024 nodes for each laysers is used as the
framework of the DNN.

C. Performance analysis discussion

The DNN-based method is different with HMM-based
method mainly in aspects below.

e Both GMM-HMM and DNN model the structures be-
tween linguistic labels and acoustic parameters for speech
synthesis, while Deep Neural Network is a more long-
span and highly-complex mapping and Hidden Markov
Model is more shallow and carefully-designed. In training
stage, HMM states and decision tree decompose the train-
ing data into small partitions and the model parameters
are updated independently with the corresponding data,
while all the weights of DNN are updated by looping
through all training data [13].

¢ The most traditional GMM-HMM system models differ-
ent kinds of features in different streams and models
FO stream in a discontinuous method (MSD-HMM).
While DNN-based system models each dim of features in
parallel and models FO in a continuous method (SPLINE
interpolation [15]). Besides, DNN-based system does
normalization to feature data before model training.

o Both GMM-HMM system and DNN-based system use a
variation of parameter generation algorithm [18] on the
output feature parameters to synthesize speech wavefor-
m. However, while doing parameter generation, GMM-
HMM system uses technologies to overcome over-
smoothing problem, e.g, considering the Global Variance
(GV [8]). And DNN-based system simply uses pre-
computed mean and variance of all training data to de-
normalize the output feature data.

With several differences between 2 kinds of systems, to
analyze DNN-based system performance, it is common to
compare the FO and spectrum performances respectively with
GMM-HMM system. It is concluded that DNN-based systems
can outperform the HMM-based systems in [9]. However, the
comparison seems to be inaccurate.

A multi-space probability distribution (MSD) HMM system
is always used as a baseline version of HMM-based system
in the previous comparison. But the continuous FO modeling
approach [15] is used in DNN-based system. In another word,
it might be the continuous FO modeling technology (e.g.
SPLINE interpolation) but not DNN modelling power that
leads to the better performance compared to MSD-HMM
system.

In the paper, CF-HMM system [7] is taken as the baseline to
compare with DNN-based system. Because of its more similar
input features and output features with DNN-based system,
the comparison seems to be more resonable and convincing.
Besides, the more carefully-designed framework of model
might bring about better results compared to MSD-HMM and
even DNN.

ITII. COMPARISON OF DISCONTINUOUS AND CONTINUOUS
FO MODELLING APPROACHES FOR HMM-BASED SYSTEM

As described in section I, there are two different funda-

mental assumptions of the FO observations:

o Discontinuous FO modelling. Multi-space probability dis-
tribution HMM (MSD-HMM) is the most widely used
solution for discontinuous FO modelling [4]. It assumes
discontinuous FO and observable voicing labels. It can be
derived that the state output distribution of MSD-HMM
is:
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P(Uls)
P(VIs)N(f+]s, V)

1=U

=V “4)

plols) = p(l, f+]s) = {
Where f is the discontinuous FO model and N (-) is re-
ferred to a Gaussian distribution. Due to the discontinuity,
it is not convenient to calculate dynamic features of FO
at the boundary between voiced and unvoiced regions.
This common implementation limits the power of HMM
to model FO trajectory.

e Continuous FO modelling. Continuous FO modelling is
proposed to improve the FO trajectory modelling. By
generating real FO values for unvoiced regions and assum-
ing hidden voicing labels, the Continuous FO modelling
is obtained [7]. In continuous FO modelling, FO was
determined by some continuous FO modelling methods,
e.g, SPLINE interpolation and N-best [15]. Then an
independent data stream is introduced to explicitly model
voicing labels, referred to as Continuous FO modelling
with Independent Voicing label and FO value [6]. To
strengthen the correlation between voicing label stream
and FO value stream, 2 streams was refined to only one
stream used to simultaneously model both observable
voicing labels and continuous FO values, referred to as
Continuous FO modelling with Joint Voicing label and
FO value [7]. The state output distribution is

plols) = p(l, fls) = P(lls)p(fls,1) 5)

Such model allows voicing labels to affect the forward-
backward state alignment process, and it will naturally
strengthen the voicing label modelling. It is revealed
that this model can achieve best improvement in the
naturalness of synthesised speech by continuous FO mod-
elling [7].

To sum up, continuous FO modelling can bring about several
advantages below [6] and is one of the state-of-art HMM-based
speech synthesis system:

o Probability mass can be shared between voiced and
unvoiced parts. Therefore, voiced observations near V/U
boundaries from can be used in the estimation of the
unvoiced distribution and vice versa. This affects the
estimation accuracy near V/U boundaries and it makes
the system robust to FO extraction errors.

o The voicing label model is consistent at V/U boundaries.
Because only one stream used in voicing labelling, it can
be overcome that the unvoiced regions for the delta and
delta-delta streams are in compatible with those for the
static stream in MSD-HMM modelling.

o The redundant voicing parameters associated with the
delta and delta-delta streams in MSD-HMM can be
decreased. Thus, when the minimum description length
(MDL) criterion [19] or any similar complexity metric
is used to control the state clustering process, the less
free parameters will result in more robust and accurate
context-dependent FO modelling.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

The DNN-based system and HMM-based system described
above have been evaluated on two CMU ARCTIC speech

synthesis data sets [20]. A U.S. female English speaker, slt,
and a U.S. male English speaker, awb, were used. Each data
set contains recordings of the same 1132 phonetically balanced
sentences totalling about 0.95 hours of speech per speaker. To
obtain objective performance measures, 90% sentences from
each data set were randomly selected as the training set for
all experiments, and the remainder were used to form a test
set and CV set.

HMM-based systems were built using a modified version
of the HTS HMM speech synthesis toolkit version 2.0.1 [21].
DNN-based systems were built using a modified version of
TNet [22] The speech features used were 24 Mel-Cepstral
spectral coefficients, the logarithm of F0O, and aperiodic com-
ponents in five frequency bands (0 to 1, 1 to 2, 2 to 4, 4
to 6 and 6 to 8 KHz). All features were extracted using the
STRAIGHT programme [23]. MDL-based state clustering [24]
was performed for each stream to group the parameters of
the context-dependent HMMs at state level. And DNN-based
system also models state level mapping. All the duration of
each state is obtained by the HMM-based system.

During the synthesis stage, global variance (GV) [8] is used
in the speech parameter generation algorithm to reduce the
well-known over-smoothing problem of HMM based speech
synthesis and make DNN-based system more robust.

B. Implementation detail

Several implementation details are discussed in this section.
Objective and subjective measures are used to evaluate the per-
formance of systems with different implementations. Synthesis
quality is measured objectively in terms of distortions between
natural test utterances of the original speaker and the synthe-
sized speech frame-by-frame. The objective measures are FO
distortion in the root mean squared error (RMSE, Hz) [6],
voiced/unvoiced (V/U) swapping errors [6] and Mel-frequency
cepstral distance (MSD) which calculates the absolute value
of the difference between two mel-cepstral coefficients. The
subjective measure includes mean opinion score (MOS) test
and AB preference test each with 10 listeners participated in.
All the tests include 5 sentences each with 2 voices synthesized
from a female database (slt) and a male database (awb).

1) Structure of DNN and its training aspects: Different
numbers of layers and different numbers of nodes in each
hidden layer are tested in this paper. Table I shows the result
that 512 or 1024 nodes for each 3 layers yield very similar
performances in all three objective measures. And Table II,
which tests system performance using 2-5 hidden layers each
with 1024 nodes also gets similar result. Besides, if the
hidden layer structure is too deep, the result can even be
deteriorated because the hardness of model training grows
with the deepness of structure. Besides, different sizes of mini-
batch also yields similar performance in Table III. So 1024*3
structure with mini-batch=256 is used in the latter experiments.

node Female Male
number RMSE [ VCE (%) [ MSD RMSE | VCE (%) | MSD
1024 12.81 6.59 0.21 13.44 4.69 0.17
512 12.35 6.36 0.20 13.79 4.92 0.17
TABLE 1

OBJECTIVE MEASURES OF NUMBER OF NODES IN 3 HIDDEN LAYER
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layer Female Male System Female Male

number RMSE [ VCE (%) | MSD RMSE [ VCE (%) [ MSD model RMSE [ VCE (%) | MSD RMSE [ VCE (%) | MSD
2 12.30 6.20 0.22 13.77 4.88 0.17 MSD-HMM 16.02 5.24 0.20 15.11 3.52 0.18
3 12.81 6.59 0.21 13.44 4.69 0.17 CF-HMM 10.56 6.51 0.20 12.17 4.77 0.18
4 12.80 6.80 0.21 13.88 4.92 0.17 DNN 12.40 6.27 0.22 13.26 4.96 0.17
5 20.50 15.36 0.40 23.79 15.92 0.35

TABLE V
TABLE II

OBJECTIVE MEASURES OF NUMBER OF LAYERS EACH WITH 1024 NODES

mini- Female Male

batch RMSE [ VCE (%) [ MSD RMSE [ VCE (%) | MSD

128 12.90 6.85 0.21 13.67 4.82 0.17

256 12.81 6.59 0.21 13.44 4.69 0.17

512 12.70 6.82 0.21 13.52 4.85 0.17
TABLE III

OBJECTIVE MEASURES OF DIFFERENT SIZES OF MINI-BATCH

2) Continuous FO modeling method: There are several
methods to model the FO in unvoiced region. In this paper,
SPLINE interpolation and N-best [6] are compared in Ta-
ble IV. Result shows that SPLINE interpolation method brings
about better FO distortion with a little worse V/UV errors.
Because human beings might be more sensitive to the pitch
distortion [6], SPLINE interpolation method is more suitable
for DNN-based system.

FO Female Male
Model RMSE [ VCE (%) | RMSE [ VCE (%)
Interpolation 12.40 6.27 13.26 4.96
N-best 12.50 6.10 14.05 4.39
TABLE IV

OBJECTIVE MEASURES OF DIFFERENT FO MODELLING METHODS IN DNN

3) Adding BAP feature: In HMM-based system, band ape-
riodical component (BAP) is used to improve quality [2]. We
test BAP performance gain in DNN-based system. Subjective
measure experiment is also conducted, and Figure 2 shows the
result. There’s statiscally-significant better listener preference
in system with BAP feature (p-values: 0.0000000016 for
female and 0.00000041 for male at 95% confidence level).

f 1
0% 25% 50% 75% 100%

Male

= With BAP
Without BAP
Female

Fig. 2.
C. Thorough performance comparison

1) MSD-HMM vs. CF-HMM vs. DNN: In this paper, 3
different synthesis systems (MSD-HMM, CF-HMM [7], DNN)
are compared, Table V shows the objective measure result. It
can be concluded that the FO modeling performance of DNN-
based system statistically-significant better than MSD-HMM
system, but a little worse than CF-HMM system. The MSD
of 3 system is almost the same. Figure 3 shows the MOS
test result. There are 5 systems in the test set, including 2
reference sets, which one is natural speech and the other is
vocoded speech to determine the effects of vocoder artifacts
on the assessment [6]. The MOS result agrees with objective
measures, which reveals that DNN-based system is better than
MSD-HMM but still worse than CF-HMM.

To further compare the performance of HMM-based system
and DNN-based system, AB preference test is conducted.

subjective measures of adding BAP features into DNN-based system

OBJECTIVE MEASURES OF DIFFERENT SPEECH SYNTHESIS SYSTEM
5

= Male

Female

a5 -
326 33

a7
4.54
4.24
4.1
4
3.62
35 | 3.44
3 3.04

| —l ]

2.5 T T T T 1

Vocoded ~ CF-HMM  MSD-HMM DNN
subjective measures of different speech synthesis system

Natural
Fig. 3.
Figure 4 firstly compare the acoustic preference between
MSD-HMM system and DNN-based system. Result shows that
DNN-based system can be greatly more pleased to human be-
ings and the preference of it is shown to be significant at 95%
confidence level (p-values: 0.0011 for female and 0.000013
for male). Figure 5 compare the CF-HMM system and DNN-
based system and shows that CF-HMM system can be a little
better than DNN-based system but not significantly(p-value is
0.16). Summarizing results before, it can be concluded that,
DNN ~ CFHMM > MSDHMM. Besides, Different
sizes of database are tested in this paper to find out how
much the performance can be gained with more training data.
Table VI shows the result. In the test, 1 hour and 5 hours
data from the same speaker are test as the training data for 3
systems respectively. It can be reveal that the performance of
CF-HMM system gains largely with more training data, while
other systems improve a little.

33.8%

Male

‘ HDNN
MSD-HMM

Female

|
100%

0% 25% 50% 75%

Fig. 4. Comparison between MSD-HMM and DNN modelling
|

Male 35.0%
B CFHMM = DNN
Female 45.0%
| | |
0% 25% 50% 75% 100%
Fig. 5. Comparison between CF-HMM and DNN modelling
System 1 hours 5 hours
model RMSE [ VCE (%) [ MSD RMSE [ VCE (%) [ MSD
MSD-HMM 28.25 6.71 0.22 25.00 5.01 0.20
CF-HMM 28.53 7.98 0.22 17.52 6.10 0.20
DNN 29.82 7.61 0.21 27.27 6.79 0.33
TABLE VI

OBJECTIVE MEASURES IN DIFFERENT SIZES OF TRAINING DATA

2) FO modeling ability analysis: To further inspect whether
DNN can better the FO modelling performance, we take CF-
HMM as baseline and directly test the FO modelling result
by providing both systems the mcep features extracted from
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natural speech data. In other words, we synthesize speech with
FO generated from DNN/CF-HMM system and mcep extracted
from real speech, and do tests on the synthetic speeches.
Figure 6 shows the subjective measure result. It can be
concluded that the ability of FO modelling is similar between
2 systems, while CF-HMM system performs better (p-values
is 0.83 at confidence level 95% which is not significant). We
suspect that it is because that CF-HMM carefully strengthen
the model by many technology [6] [7], while using DNN to
model FO is still rough and need more researches.

1 B CFHMM = DNN

0% 25% 50% 75% 100%
Fig. 6. Comparison of fO modelling ability between CF-HMM and DNN

Male 65.0%

Female 41.7%

3) Spectrum modeling ability analysis: By similar method,
we test the mcep modelling ability between CF-HMM and
DNN. Figure 7 shows the result. It reveals that CF-HMM does
better in mcep modelling and there’s still long way for DNN-
based system to go, especially in spectrum modelling.

|
Male

® CFHMM = DNN

Female 8%

0% 25% 50% 75% 100%
Fig. 7. Comparison of mcep modelling ability between CF-HMM and DNN

V. CONCLUSION AND FUTURE WORK

This paper has described several implementation details of
DNN-based speech synthesis system and compared different
methods by experiments which can notably impact perfor-
mance. The performance gain and weakness of DNN-based
system are further investigated and CF-HMM system is taken
as the baseline to compare with DNN-based system, Because
of its more similar input features and output features with
DNN-based system. Result shows the ability of FO modelling
is similar between 2 systems, while CF-HMM system performs
better. The reason seems that CF-HMM carefully strengthen
the model by many technology, while using DNN to model FO
is still rough and need more researches. Another experiment
shows that CF-HMM does better in mcep modelling and
there’s still long way for DNN-based system to go, especially
in spectrum modelling.

In summary, Deep Neural Network is a more long-span
and highly-complex mapping while Hidden Markov Model is
more shallow and carefully-designed. Currently, no enough
evidence shows that the modeling ability of a hierarchical
complex structure has outperformed that of a shallow but
carefully-designed and optimized one. How we can analyze
the modeling ability and proficiency between them and then
realize these potentials is a topic for future investigation.
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