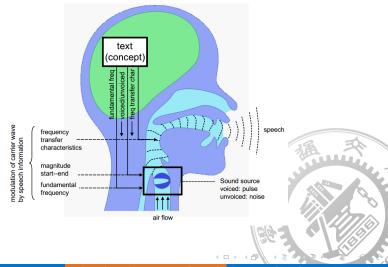
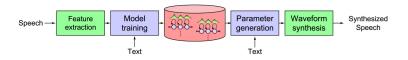
# Has DNN Outperformed HMM in Speech Synthesis?

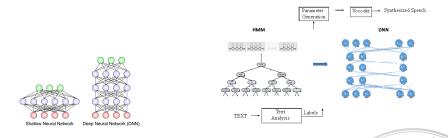

Zhehuai Chen

Speech Lab Department of Computer Science and Engineering Shanghai Jiao Tong University


Oct. 2014

- Introduction
- DNN-based Speech Synthesis System Implementation
- System Performance Analysis
- Experiment Results
- Conclusions

# Typical Speech Synthesis Flow



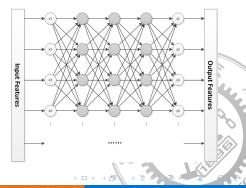

HMM-based Speech Synthesis



- To map from input linguistic feature to output acoustic features for synthesis
- Hidden Markov model (HMM) as its acoustic model

# Deep Neural Network in Speech Synthesis




- suitable to model a long-span, intricate transform compactly with a deep-layered structure
- successfully used in speech recognition, also applied to speech synthesis (Zen, et al) to replace the HMM in the system

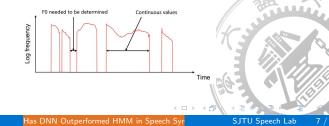
# DNN-based Speech Synthesis System Implementation

Framework of DNN-based System

- 3-hidden-layer Nearual Network between linguistic full context labels and acoustic waveform parameters
- Rich contexts packed into a long vector frame-by-frame are used as input feature
- The input features are mapped to output acoustic features by a trained DNN using forward propagation, dynamic features included

 Vocoding Process is the same to HMM-based system




Different Aspects between DNN & HMM system

Model Framework

Long-span and highly-complex  $\boldsymbol{vs}.$  shallow but carefully-designed

- Data Useage Training Model using all data vs. Data Clustering
- F0 Modeling

Continuous F0 modelling *vs.* traditional Multi-space Probability Distribution(MSD-HMM)



#### Training Data

A U.S. female English speaker, slt and a U.S. male English speaker, awb. Split into Training Set & Test Set.

Framework of System
3 hidden layers and each with 1024 nodes. mini-batch=256.
Modified version of TNet as the training tool.

#### Acoustic Feature Setup

Continuous F0 modeling using Interpolation, 24 Mel-Cepstral spectral coefficients, 5 Band Aperiodic Components

# MSD-HMM vs. CF-HMM vs. DNN

| System  | Female |         |      | Male  |         |      |
|---------|--------|---------|------|-------|---------|------|
| model   | RMSE   | VCE (%) | MSD  | RMSE  | VCE (%) | MSD  |
| MSD-HMM | 16.02  | 5.24    | 0.20 | 15.11 | 3.52    | 0.18 |
| CF-HMM  | 10.56  | 6.51    | 0.20 | 12.17 | 4.77    | 0.18 |
| DNN     | 12.40  | 6.27    | 0.22 | 13.26 | 4.96    | 0.17 |

Table: objective measures of different speech synthesis system

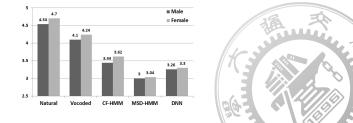
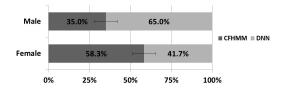
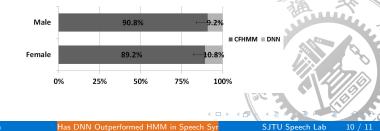




Figure: subjective measures of different speech synthesis system


Zhehuai Chen

Has DNN Outperformed HMM in Speech Sy

# F0 modeling ability analysis



# Spectrum modeling ability analysis



- CF-HMM system should be taken as the baseline to compare with DNN-based system, Because of its more similar input features and output features with DNN-based system.
- The ability of F0 modelling is similar between 2 systems, while CF-HMM system performs better in spectrum.
- No enough evidence shows that the modeling ability of a hierarchical complex structure has outperformed that of a shallow but carefully-designed and optimized one.

So how we can analyze the modeling ability and proficiency between them and then realize these potentials is a topic for future investigation.