

SJTU SPEECH LAB 上海交通大學智附派着實驗空

On Modular Training of Neural Acoustics-to-Word Model for LVCSR

Zhehuai Chen, Qi Liu, Hao Li and Kai Yu

- Review of End-to-End (E2E) ASR
- Motivation and our Target
- Modular training strategy
 - Framework
 - Analysis
 - Implementation
- Experiment

Review ASR and DNN-HMM hybrid system

- Acoustic, pronunciation, and language model
- Separate optimization
- Alignment from an existing model
- Decoder to combine them and find the best hypothesis

Shanghai Iiao Tong Universit

Review End-to-End (E2E) ASR

- Characteristics:
 End-to-End optimization + End-to-End inference (decoding)
- Advantages:
 - Better sequential modeling: better WER (Soltau et al.2017)
 - Simpler and faster decoding: 3-5X speedup (Chen et al.2017)

- Characteristics:
 End-to-End optimization + End-to-End inference (decoding)
- Advantages:
 - Better sequential modeling: better WER (Soltau et al.2017)
 - Simpler and faster decoding: 3-5X speedup (Chen et al.2017)
- Disadvantages:

Big data? But why?

Characteristics: End-to-End optimization + End-to-End inference (decoding)

- Advantages:
 - Better sequential modeling: better WER (Soltau et al.2017)
 - Simpler and faster decoding: 3-5X speedup (Chen et al.2017)
- Disadvantages:

Big data? But why?

K B + AA1 I + R E

6

- Acoustic data and text data usage
- AM and LM both infer grapheme/word
- Hard to apply prior arts

- Characteristics:
 End-to-End optimization + End-to-End inference (decoding)
- Disadvantages:
 - Acoustic data and text data usage
 - AM and LM both infer grapheme/word
 - Hard to apply prior arts

Our Solution

- Step 1: utilize different sources to train each building block (for performance)
- Step 2: retaining end-to-end decoding by final joint optimization (for speed)

 $P(\mathbf{w}|\mathbf{x}) \approx \max \left[P(\mathbf{w}|\mathbf{p}) \cdot PSD(P(\mathbf{p}|\mathbf{x})) \right]$

- utilizing acoustic and text data in E2E ASR modeling by modular training strategy
- combining modules into an acoustics-to-word model (A2W) by phone synchronous decoding (PSD, Chen et al.2017) and joint optimization

(a) Acoustic-to-phoneme Module

(b) Phoneme-to-word Module

⁽c) PSD-based Joint Training

Modular training strategy Analysis

$$P(\mathbf{w}|\mathbf{x}) \approx \max_{\mathbf{p}} \left[P(\mathbf{w}|\mathbf{p}) \cdot PSD(P(\mathbf{p}|\mathbf{x})) \right]$$

- Compared with Multi-modal Training 🗘 :
 - modularizing the end-to-end speech recognition by Bayesian theorem
 - utilizing respective inference units for acoustic and language modeling
 - the LM generalizes word sequences and lexicons jointly.

♀ Multi-model Training refers to methods utilizing multi-source data to augment the ASR training corpus

Modular training strategy Analysis

$$P(\mathbf{w}|\mathbf{x}) \approx \max_{\mathbf{p}} \left[P(\mathbf{w}|\mathbf{p}) \cdot PSD(P(\mathbf{p}|\mathbf{x})) \right]$$

- Compared with Multi-modal Training:
 - modularizing the end-to-end speech recognition by Bayesian theorem
 - utilizing respective inference units for acoustic and language modeling
 - the LM generalizes word sequences and lexicons jointly.
- What we expect:
 - easier and faster model convergence due to modularization and initialization
 - easy to utilize traditional AM and LM techs using text and acoustic data respectively.

Modular training strategy Modularization

(a) Acoustic-to-phoneme Module

(b) Phoneme-to-word Module

or + W

p

- Still take phoneme as the mediator between acoustics and words
- Using acoustic data, train a phoneme recognition model, $P(\mathbf{p}|\mathbf{x})$, e.g. the standard mono-phone CTC or LFMMI.

Modular training strategy Modularization

K B + AA1 I + R E

 $\mathbf{x} \rightarrow \mathbf{x} \rightarrow \mathbf{x}$

(a) Acoustic-to-phoneme Module

(b) Phoneme-to-word Module

- Still take phoneme as the mediator between acoustics and words
- Using acoustic data, train a phoneme recognition model, $P(\mathbf{p}|\mathbf{x})$, e.g. the standard mono-phone CTC or LFMMI.
- Using text data, train a phoneme-to-word system, $P(\mathbf{w}|\mathbf{p})$, e.g. CTC or S2S.

Modular training strategy Modularization

 $\mathbf{x} \rightarrow \mathbf{x} \rightarrow \mathbf{x} \rightarrow \mathbf{p} \qquad \mathbf{p}$

(a) Acoustic-to-phoneme Module

(b) Phoneme-to-word Module

or → W

- Still take phoneme as the mediator between acoustics and words
- Using acoustic data, train a phoneme recognition model, $P(\mathbf{p}|\mathbf{x})$, e.g. the standard mono-phone CTC or LFMMI.
- Using text data, train a phoneme-to-word system, $P(\mathbf{w}|\mathbf{p})$, e.g. CTC or S2S.
 - P2W model v.s. LM:
 - implicitly doing the phoneme tokenization
 - always easier than LM, as P2W gets more phoneme hints from the next word
 - trained by sequence criteria → learn phoneme-word alignment
 - Adding word boundary unit <wb> to help tokenization

Oh, god: OW1_S <wb> G_B AA1_I D_E <wb>

 $\underline{\mathsf{K}} + \underline{\mathsf{AA1}} + \underline{\mathsf{R}} = \underbrace{\mathsf{CAR}}$

- Motivation:
 - Different information rate in acoustics and phoneme
 - Iong sequence is hard for S2S (for speech, avg. 500 tokens)

[1] Chen, Zhehuai, et al. "Phone synchronous speech recognition with ctc lattices." IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.1 (2017): 90-101.

- Motivation:
 - Different information rate in acoustics and phoneme
 - Iong sequence is hard for S2S (for speech, avg. 500 tokens)
 - Speedup training and decoding
- Procedure:
 - A2P inference
 - PSD sub-sampling
 - P2W inference
 - Back propagation
 - fine-tune P2W only

(c) PSD-based Joint Training

Experiment Setup

- Switchboard 300 corpus
- A2P model
 - CTC
 - 36-d fbank
 - 45 mono-phones and a blank and <wb>
 - 5X1024(P=256) LSTMs
- P2W model
 - CTC / S2S
 - 30K vocabulary size
- 3-gram SWBD LM without Fisher interpolation
 - Hybrid CE baseline
 - Mono-phone CTC baseline
- Direct A2W baseline
- More details in our paper

Performance of each module in the validation set

Module	Model	Inf. Label	Word bound.	PER/WER CV (%)
A2P	CTC	phoneme	$\overset{\times}{\checkmark}$	13.0 12.0
P2W	CTC	word	\times $$	16.0 4.3
P2W –	S2S	word	\times $$	13.9 2.8

<wb> doesn't hurt the A2P performance (prediction error=4%)

Performance of each module in the validation set

Module	Model	Inf. Label	Word bound.	PER/WER CV (%)
A2P	CTC	phoneme	\times $$	13.0 12.0
P2W	CTC	word	\times $$	16.0 4.3
P2w –	S2S	word	\times $$	13.9 2.8

- <wb> doesn't hurt the A2P performance (prediction error=4%)
- <wb> significantly helps P2W

Performance of each module in the validation set

Module	Model	Inf. Label	Word bound.	PER/WER CV (%)
A2P	CTC	phoneme	$\overset{\times}{\checkmark}$	13.0 12.0
P2W	CTC		\times $$	16.0 4.3
P2W —	S2S	word	\times $$	13.9 2.8

- <wb> doesn't hurt the A2P performance (prediction error=4%)
- <wb> significantly helps P2W
- S2S is consistently better thanks to removal of conditional independent assumption in CTC 19

 CI-phone CTC v.s. CD-phone CE is similar to other research in this corpus

	E2E	Modularization		E2E Modularization V		WE	R (%)
Name	Opt.	A2P	P2W	swbd	callhm		
CD-phone CE	×	HMM	WFST 🖓	14.9	27.6		
CI-phone CTC	×	CTC	WFST	19.4	33.5		
Word CTC		n/a	n/a	29.6	41.7		
Mod. CTC		CTC	CTC	24.9	36.5		

♀ "WFST" in P2W is compiled from a 3-gram LM trained by SWBD corpus.

Experiment Baseline

- CI-phone CTC v.s. CD-phone CE is similar to other research in this corpus
- Direct A2W CTC with phoneme initialization but without GloVe in [1]

	E2E	Modularization		E2E Modularization		WE	CR (%)
Name	Opt.	A2P	P2W	swbd	callhm		
CD-phone CE	×	HMM	WFST	14.9	27.6		
CI-phone CTC	×	CTC	WFST	19.4	33.5		
Word CTC		n/a	n/a	29.6	41.7		
Mod. CTC		CTC	CTC	24.9	36.5		

[1] Audhkhasi K, Ramabhadran B, Saon G, et al. Direct Acoustics-to-Word Models for English Conversational Speech Recognition[J]. Proc. Interspeech 2017, 2017: 959-963.

Experiment Effects of Modular Training Strategy

- Proposed modular training significantly improves the baseline
 - Easier and faster model convergence
 - Better to capture the LM knowledge source

	E2E	Modularization		E2E Modularization		WE	ER (%)
Name	Opt.	A2P	P2W	swbd	callhm		
CD-phone CE	×	HMM	WFST	14.9	27.6		
CI-phone CTC	×	CTC	WFST	19.4	33.5		
Word CTC		n/a	n/a	29.6	41.7		
Mod. CTC		CTC	CTC	24.9	36.5		

Training speedup

- PSD reduces the sequence length to be processed by P2W in each sequence
- As the sequence length is reduced, more sequences can be loaded into GPU memory for parallel training

		Training S	WER (%)			
Name	PSD	Seq./GPU♀ fr./s.◊		swbd	callhm	
Med CTC	×	5	1027	32.0	42.5	
Mod. CTC	\checkmark	30	5851	24.9	36.5	

\$ "seq./GPU" denotes the number of streams used in parallel LSTM training.
\$ "fr./s." denotes the number of acoustics frames processed per second.

Training speedup

- PSD reduces the sequence length to be processed by P2W in each sequence
- As the sequence length is reduced, more sequences can be loaded into GPU memory for parallel training
- Performance improvement
 - Reduced sequence length (some researches cope it by pyramid model structure)

		Training Sp	WER (%		
Name	PSD	Seq./GPU 🗭	fr./s.◊	swbd	callhm
Mod. CTC	×	5	1027	32.0	42.5
	\checkmark	30	5851	24.9	36.5

\$ "seq./GPU" denotes the number of streams used in parallel LSTM training.
\$ "fr./s." denotes the number of acoustics frames processed per second.

- Decoding with external LM still helps
 - Current P2W modeling is still not perfect (conditional independent assumption in CTC)

	E2E	Modularization		WE	R (%)
Name	Opt.	A2P	P2W	swbd	callhm
CD-phone CE	×	HMM	WFST	14.9	27.6
CI-phone CTC	×	CTC	WFST	19.4	33.5
Word CTC		n/a	n/a	29.6	41.7
Mod. CTC		CTC	СТС	24.9	36.5
Mou. CIC	\checkmark	CTC	✓ +WFST ^Q	23.0	35.1
Mod. S2S		CTC	S2S	31.2	40.5

♀ "WFST" in P2W is compiled from a 3-gram LM trained by SWBD corpus.

- Decoding with external LM still helps
 - Current P2W modeling is still not perfect
 - The overall improvement is similar to the optimization in [1]

	E2E	Modularization		WE	R (%)
Name	Opt.	A2P	P2W	swbd	callhm
CD-phone CE	×	HMM	WFST	14.9	27.6
CI-phone CTC	×	CTC	WFST	19.4	33.5
Word CTC	\checkmark	n/a	n/a	29.6	41.7
Mod. CTC		CTC	CTC	24.9	36.5
Mou. CTC	\checkmark	CTC	+WFST	23.0	35.1
Mod. S2S	\checkmark	CTC	S2S	31.2	40.5

[1] Audhkhasi K, Ramabhadran B, Saon G, et al. Direct Acoustics-to-Word Models for English Conversational Speech Recognition[J]. Proc. Interspeech 2017, 2017: 959-963.

- Unlike in P2W task, S2S shows no improvement:
 - S2S is prone to the phoneme recognition errors from the A2P module

	E2E	Modularization		WE	R (%)
Name	Opt.	A2P	P2W	swbd	callhm
CD-phone CE	×	HMM	WFST	14.9	27.6
CI-phone CTC	×	CTC	WFST	19.4	33.5
Word CTC	\checkmark	n/a	n/a	29.6	41.7
Mod. CTC	\checkmark	CTC	CTC	24.9	36.5
Mod. CTC	\checkmark	CTC	+WFST	23.0	35.1
Mod. S2S	\checkmark	CTC	S2S	31.2	40.5

Experiment More Comparisons

- Overall, the gap between E2E ASR and traditional CTC is reduced to relative 15% (in [1], 21.7 → 14.5, 30% gap)
 - Modular strategy could be better to catch up the gap

	E2E	Modularization		WE	R (%)
Name	Opt.	A2P	P2W	swbd	callhm
CD-phone CE	×	HMM	WFST	14.9	27.6
CI-phone CTC	×	CTC	WFST	19.4	33.5
Word CTC		n/a	n/a	29.6	41.7
Mod. CTC		CTC	CTC	24.9	36.5
Mod. CTC	\checkmark	CTC	+WFST	23.0	35.1
Mod. S2S	\checkmark	CTC	S2S	31.2	40.5

[1] Audhkhasi K, Ramabhadran B, Saon G, et al. Direct Acoustics-to-Word Models for English Conversational Speech Recognition[J]. Proc. Interspeech 2017, 2017: 959-963.

Our new results

- The gap can finally disappeared (still retaining E2E decoding)
- Modular training is easy to combine with prior arts

	_					
	E2E	Modularization		WER (%)		_
Name	Opt.	A2P	P2W	swbd	callhm	_
CD-phone CE	×	HMM	WFST	14.9	27.6	
CI-phone CTC	×	CTC	WFST	19.4	33.5	
Word CTC		n/a	n/a	29.6	41.7	<u> </u>
Mod. CTC		CTC	CTC	24.9	36.5	_
Mou. CIC		CTC	+WFST	23.0	35.1	
Mod. S2S		CTC	S2S	31.2	40.5	_
new results						
better CTC		CTC	CTC	19.8	34.0	Ì
+ I-vector, etc.		CTC	CTC	16.5	30.5	
better S2S		CTC	S2S	24.4	37.2	2
		Shang	HAI JIAO TONG UNIVERSITY			

Experiment Examples Analysis

- Stronger language and context modeling
- Less robustness

Conclusion

- Utilizing different sources to train each building block for easier and faster model convergence
- retaining end-to-end decoding by final joint optimization
- Phone Synchronous Decoding helps both performance and speed

(a) Acoustic-to-phoneme Module

(b) Phoneme-to-word Module

(c) PSD-based Joint Training

- Promising to:
 - solve "big data" problem
 - utilize traditional AM and LM techs using text and acoustic data respectively

Backup materials

- Training speedup
- Performance improvement
- Compared to A2W baseline
 - Benefit: better convergence and knowledge integration
 - Harm: information loss from modularization

		Training Speed		WER (%)	
Name	PSD	Seq./GPU	fr./s.	swbd	callhm
Word CTC (baseline)	-	-	-	29.6	41.7
Mod. CTC	×	5	1027	32.0	42.5
	\checkmark	30	5851	24.9	36.5

"fr./s." denotes the number of acoustics frames processed per second. "seq./GPU" denotes the number of streams used in parallel LSTM training.

Why we only fine-tune P2W:

- the A2P module, mono-phone level CTC model, can always achieve good modeling effects for phoneme recognition.
- take distribution but not one-hot
- fixing A2P and combining PSD module can greatly speed up the joint optimization, which we will show in experiments
- Procedure:

