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ABSTRACT
Connectionist Temporal Classification (CTC) model has achieved
state-of-the-art LVCSR performance. However, due to the introduc-
tion of the blank symbol, word-level confidence measures (CM)
based on CTC model can not be easily calculated by directly using
the traditional phone posterior normalization or confusion network
(CN) approaches. Recently, a phone synchronous decoding (PS-
D) framework has been proposed for efficient decoding with CTC
model. By automatically ignoring blank frames, PSD decoding not
only achieves significant speed-up, but also yields highly compact
and precise CTC phone lattices. In this work, two CM generation
approaches on top of the PSD CTC lattice are proposed. Detailed
investigation is also carried out to demonstrate the effectiveness of
PSD CTC lattice. Experiments on an English switchboard LVCSR
task showed that the performance of the proposed PSD CTC lattice
based CM can significantly outperform the CM based on traditional
frame synchronous decoding with CTC or HMM models.

Index Terms— CTC, Confidence measure, PSD, CTC lattice

1. INTRODUCTION

Automatic speech recognition (ASR) has achieved substantial suc-
cesses in past few decades. However, when speech recognition sys-
tems are migrated from laboratory demonstrations to real-world ap-
plications, even the best ASR systems available today will inevitably
make some mistakes during recognition [1], i.e., outputs from any
ASR system are always fraught with a variety of errors. Thus, in any
real-world application, it requires the ASR systems to automatical-
ly assess reliability or probability of correctness for every decision
made by the system.

In speech recognition, confidence measures (CM) are used to
evaluate reliability of recognition results [2]. Such kinds of methods
can be divided into the following categories:

• Predictor features based CM. Feature from ASR decoding
process can be called a predictor if its probabilistic distribu-
tion of correctly recognized words is clearly distinct from that
of misrecognized words. CM can be derived from one or
more of them, e.g., normalized acoustic score [3], duration
[4], local entropy [5]. However, none of the above predic-
tor features is ideal in distribution distinctness [2]. There-
fore, models are proposed to combine these features together
and predict an overall CM, e.g, CRF [6], Neural Network [7],
etc. But these methods are still imperfect. Firstly it is be-
cause individual predictors are not statistically independent,
and secondly it requires an additional training stage and as-
sumes training data matches test data.
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• Posterior based CM. Another kind of methods formulates
ASR as the maximum a posterior (MAP) decision process.
The posterior probability of ASR output given the whole ut-
terance can be served as CM. Several methods are proposed
to model the normalizing term of it, e.g., filler model [8],
word lattice [9] and confusion network [10]. However, ASR
decoders are commonly designed for finding the single best
path, which results in imperfect word lattice and leads to un-
normalized posteriors in CM [11].

Connectionist temporal classification (CTC) [12] has been pro-
posed as a new type of acoustic model in ASR and achieved state-of-
the-art performance[13][14][15][16]. Besides, context independent
mono-phone CTC model also shows competitive performance com-
pared with context dependent state clustered hybrid neural network
HMM model[16][17][18][19]. However, due to the use of blank
symbol, CM calculation becomes tricky. As shown in the experi-
ments of the paper, simply treating blank symbol as a special phone
and applying traditional CM approaches will yield very poor perfor-
mance.

Recently, a phone synchronous decoding (PSD) framework has
been proposed for fast decoding with CTC models. By automati-
cally ignoring the blank frames during decoding and only carrying
out Viterbi search at phone frames, PSD not only achieves signifi-
cant decoding speed-up, but also generates extremely compact and
high quality phone lattices[20][21]. In this paper, two CM calcula-
tion approaches, phone posterior average and confusion network, are
proposed on top of the PSD CTC lattice. Compared to CM generat-
ed on top of the phone lattice from the traditional frame synchronous
decoding (FSD) with both CTC and HMM models, the proposed ap-
proaches are more effective. The whole paper is arranged as follows.
In section 2, PSD framework and CTC lattice are briefly reviewed.
In section 3, two CMs are proposed as a pair of complements in CTC
PSD framework. Section 4 describes experiments and analysis, fol-
lowed by the conclusion in section 5.

2. PHONE SYNCHRONOUS DECODING

CTC model [12] predicts the conditional probability of the whole
label sequence as (1)

P (l|x) =
∑

π∈B−1(l)

P (π|x) =
∑

π:π∈L′,B(π1:T )=l

T∏
t=1

ytπt
(1)

where , l denotes a phone label sequence, l ∈ L and L is the
phone set for ASR. x = (x1, . . . , xT ) is the corresponding fea-
ture sequence, t is the index of frame and T is the total number
of frames. π1:T = (π1, . . . , πT ) is the frame-wise CTC output
symbol path from frame 1 to T . Each output symbol π ∈ L′ and
L′ = L ∪ {blank}. blank is a special symbol modelling the am-
biguous variabilities outside the defined phone sets. ytk is the proba-
bility of output symbol of CTC network k at time t. A many-to-one
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mapping B is defined as B : L′ 7→ L to determine the correspon-
dence between a set of paths and a phone label sequence.

In CTC model, the use of function B results in peaky and con-
centrated phone posteriors. In [21], by identifying each frame as
blank or phone and ignoring all blank frames, search is carried
out only at phone frames, leading to tremendous search redundan-
cy removal. The special variable frame rate approach is referred
to as phone synchronous decoding (PSD). In addition to decoding
speed-up, PSD also benefits lattice generation. In traditional phone
lattice generation framework [22][23], a postprocessing procedure
is needed to combine phonemic arcs with similar time boundary. In
contrast, due to the hard removal of blank frames, compared with
the traditional frame synchronous decoding (FSD), less search er-
rors and phone boundary disambiguity are made. This results in
more compact, precise and boundary-clear phone lattice, referred to
as PSD CTC lattice.

3. CONFIDENCE MEASURES FROM PSD CTC LATTICE

3.1. Phone Synchronous Phonemic Acoustic Confidence

CTC phone posteriors within the time span of a word can be accu-
mulated to produce an estimation of the acoustic confidence measure
(CM) of the word. In PSD framework, the word-level CM C(w) can
be derived from the logarithmic posterior probability of the corre-
sponding best decoding path.

C(w) = log
∑

π∈B−1(lw)

P (π|x) , max
π′:π′∈L,B(π′

jw
)=lw

∑
j:j∈jw

log(y
tj
π′j
) (2)

lw denotes the phone sequence corresponding to word w. j is
the index of the phone sequence (i.e. non-blankCTC label sequence
defined in [21]). As the word boundary is clear in PSD CTC, jw can
be defined as the set of phone index of word w in the best decoding
path. Proposed phone synchronous phonemic acoustic confidence
can be individually used as CM, or combined with other predictors
to train model as in [7].

Empirically, the function of B in CTC is imperfect, which result-
s in multiple continuous peaks in a single phonemic output. There-
fore, it is reasonable to normalize on different numbers of continuous
peaks. One method is to do arithmetic mean within each phonemic
output (called peak-mean). However, because the multiple peaks
come from imperfect modeling, a better method is to ignore the im-
perfect span and remain the best one. Therefore, choosing the maxi-
mum peak as phonemic output is another method (called peak-max).
Besides, different words are of different lengths of phone sequence.
To make CM between different words more competing and compa-
rable, it is reasonable to normalize on the length of phone sequence
(called phone-mean).

Another empirical issue is that there might be overlapped potion
between blank and phonemic span (although the case is not com-
mon). It is then useful to introduce the confidence of non-blank.
The phonemic frame confidence (called phone-conf ) can be defined
as the the probability of phone output in certain frame. Therefore,
the combination of all the elaborate designment can be summarized
as (3),

C(w) , max
π′:π′∈L,B(π′

jw
)=lw

1

|jw|
∑
j:j∈jw

max
t:t∈tj

log(ytπ′j (1− y
t
blank)

α)

(3)
here peak-max is taken as an example (peak-mean and peak-max are
two exchangeable setups). tj is the set of frame index of phone j in
the best decoding path. α is the weight of confidence interpolation.

3.2. Confusion Network from PSD CTC Lattice

Similar as [10], there are two steps to generate confusion network
(CN): a) generate word lattice from phone level PSD CTC lattice as
described in [21]; b) convert word lattice, in which word boundary
time is included, to confusion network which is a pure word graph.
In [24], the pivot clustering algorithm is proposed, which makes CN
generation run inO(n) time, n is the number of arcs in the lattice. In
this work, the best path is used as pivot, and because of the compact-
ness of CTC lattice, the CN generation is very efficient. During the
construction of CN, word posterior is calculated and can be naturally
used as word-level CM.

Figure 1 is a real example (an utterance ”OH YEAH”) showing
the effectiveness of CN generated from PSD CTC lattice compared
with CN from HMM-DNN based phone lattice. The inference result-
s from HMM and CTC are plotted in Figure 1(a) and the resultant
phone lattices and word lattices from HMM and CTC are plotted re-
spectively in Figure 1(b∼e). It can be observed that both phone lat-
tice and word lattice from CTC are more compact thanks to the use of
function B. In other word, lattice from HMM needs further heuristic
many-to-one function to remove the redundancy, e.g., lattice prun-
ing [23], which is not as efficient as the use of function B in CTC
model. It is worth noting that when CTC model is used in the tra-
ditional frame synchronous decoding (FSD) framework, phone and
word lattices can also be generated using similar approach[22] as
in the HMM-DNN case by treating the blank symbol as a normal
phone label. However, due to the search error from frame-level de-
coding and lattice pruning as well as ambiguous word boundaries,
the resultant CN is of poorer quality. This will be investigated in
detail in the experiment section.

Fig. 1. Comparison of lattices from HMM & PSD with CTC

4. EXPERIMENTS

A 300 hour English switchboard task was used to evaluate the pro-
posed CM approaches. Both context dependent state level HMM
(CD-state-HMM) and context independent mono-phone level CTC
(CI-phone-CTC) models were trained. The training configuration
and decoding setup were similar to [21]. All models were designed
with around 2-2.5M parameters to get fair comparison. During test-
ing, the switchboard subset from NIST Hub5e00 testset (1831 ut-
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terances) was used. With the CTC model, both frame synchronous
decoding (FSD) and phone synchronous decoding (PSD) were both
applied for comparison. Table 1 gives the performance of different
models and decoding frameworks1.

Table 1. WER comparison
Model Unit AM Decoding WER

CD-state DNN-HMM FSD 16.7

CI-phone LSTM-CTC FSD 18.7
PSD 18.8

4.1. Comparison of Confusion Network from FSD and PSD

This section demonstrates why confusion networks (CN) construct-
ed from PSD CTC lattice is better than from FSD phone lattices.
Phone lattice quality is analysed first, followed by discussions on
word lattice and CN generation.

4.1.1. Phone Lattice Quality Analysis

As discussed in section 2, CTC model encodes the many-to-one
function of B and results in peaky phonemic inference results. PSD
phone lattice is generated simply by discarding significant amount
of blank frames and constructing phone sausages on the remaining
time-discontinuous frames. This procedure avoids search errors and
ambiguous phone boundaries at blank frames and results in more
compact and precise phone lattice compared to FSD decoding.

Oracle phone error rate (OPER) is used as the measurement to
evaluate overall quality of phone lattice. It is calculated as the error
rate of the best possible phone sequence existing in the lattice w.r.t.
the reference phone sequence [25]. Lattice density (Arcs/Sec) is used
as the metric of lattice compactness [26].

Fig. 2. OPER v.s. lattice depth in FSD & PSD

Figure 2 shows OPER versus lattice density from different de-
coding setup2 of phone lattice generated from FSD and PSD. It can
be observed that at similar OPER, the size of PSD lattice is more
than 10 times smaller than FSD lattice generated from the same
CTC model, and even more times smaller than that from HMM-
DNN model. The reason of the distinct gap has two folds. First-
ly, the peaky posterior property of CTC model naturally results in
compact phone lattice. Secondly, PSD avoids search error at large
amount of blank frames, while for FSD, lattice generation algo-
rithms usually need to introduce heuristic approximation [27] and
lattice pruning[22], which result in search errors. To sum up, with

1Previous works [19][16][20] showed that with larger training dataset, CI-
phone-CTC model can perform better than CD-state-HMM model. Since the
focus of this paper is CM, confidence measures were still investigated using
the switchboard task.

2The lattice density can be controlled by tuning CTC lattice threshold β
in [21] and lattice beam pruning in [22].

similar size, PSD CTC lattice contains more phone-level acoustic
information. Since the focus of the section is to compare FSD with
PSD, later experiments only compare CTC based FSD and PSD.

4.1.2. PSD CTC lattice Results in Better CN

To construct confusion network, word lattice needs to firstly be gen-
erated from phone lattice. Figure 3 shows lattice quality comparison
between word lattices generated from the FSD and PSD CTC phone
lattices. Here, oracle word error rate (OWER) is used as indica-
tor of word lattice quality. In the figure, we plot the percentage of
1 − OWER

WER
as the relative oracle word error rate reduction in the

vertical axis to indicate the best possible performance improvemen-
t that the word lattice can bring about compared with the original
1-best WER. It can be clearly observed that with similar lattice den-
sity, PSD CTC word lattice mostly has better OWER. It can then be
concluded that PSD based CTC phone lattice results in better word
lattice quality, especially when lattice density is small.

Fig. 3. Lattice density v.s. relative oracle word error rate reduction

Once word lattice is constructed, words with similar time bound-
aries are merged during CN generation using pivot based word clus-
tering algorithm. Hence, time boundary accuracy of word lattice also
affects the quality of the resultant CN. To analyse the time boundary
quality of word lattice, Nearest pivot boundary distance is defined
as |barc− bcluster|+ |earc− ecluster|, where b∗ and e∗ are the begin
and end of the word boundary and arc are the word arcs aligned to
the best overlap pivot word cluster.

Fig. 4. Boundary stability of PSD and FSD word lattice

Figure 4 shows the average nearest pivot boundary distance of
PSD and FSD word lattice with different sizes. It is revealed that
nearest pivot boundary distance of PSD word lattice from PSD is
distinctly smaller. In other word, the boundary of FSD based lat-
tice is more unstable, which results in inefficient and inaccurate CN
construction.

Finally the conversion efficiency from word lattice to CN was
investigated. Figure 5 shows word lattice density versus confusion
network depth (CN depth) after word clustering [24]. Result shows
that with similar word lattice density, more competitors are gener-
ated from PSD lattice, which will bring about better OWER of CN
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and also more competing information of hypothesis. It is reasonable
to assume that with more competing information of hypothesis, CN
based confidence measure will get better performance.

Fig. 5. lattice density v.s. CN depth

4.2. Confidence Measure Evaluation

In the section, word-level confidence measures (CM) are calculated
using the two PSD CTC lattice based approaches described in sec-
tion 33. To evaluate the quality of word-level CM, normalised cross
entropy (NCE) [28][29] is used here:

NCE =
H(C)−H(C|x)

H(C)
(4)

where H(C) corresponds to the entropy of the tag sequence, and
H(C|x) is the entropy of the confidence score sequence. It’s an
information measure of how much additional information the tags
can provide over the trivial baseline case of tagging all words with
the average score. The higher NCE is the better.

4.2.1. PSD Phonemic Acoustic Confidence

Table 2 compares the proposed PSD phonemic acoustic confidence
with the traditional phone posterior average approach. The tradi-
tional approach in [3] originally applied in HMM, was extended to
CTC in FSD framework (denotated as baseline). The peak-mean,
peak-max, phone-mean, phone-conf discussed in 3.1 are denotated
as PN1, PN2, PN3 and PC respectively.

Table 2. Comparison of phonemic acoustic confidence based CM
AM Decoding CM NCE

DNN-HMM FSD baseline 0.024

LSTM-CTC

FSD baseline 0.058

PSD
PN1⊕ PN3 0.105
PN2⊕ PN3 0.135

PN2⊕ PN3⊕ PC 0.141

Result shows that phonemic acoustic confidence proposed in [3]
performs badly in word level. This is because the uncertainty of
word boundary results in overlap of the acoustic score calculation,
which consequently yields poor performance. When the approach is
used with CTC model, the overlap problem can be alleviated because
of peaky distribution characteristics of CTC inference result. But it
is still problematic to decide whether allocate the probability mass
of blank to the previous or the next phonemic label.

In PSD framework, the word boundary and blank allocation
problem can both be solved, resulting in much better NCE. Besides,
it is beneficial to use peak-max instead of peak-mean, which is paral-
lel with analysis in 3.1. When the phonemic confidence is combined

3To compensate for the effects of the lattice size and the resulting over-
estimation of the posteriors a decision tree was trained for each system to
map the posterior probabilities to confidence scores [10]. Note that sentence
level confidence scores can be calculated similarly and the conclusion does
not change.

with phone-conf introduced previously, the performance becomes
consistently better. Hence, in latter experiment, PN2 ⊕ PN3 ⊕ PC
are used as the best phonemic acoustic confidence.

4.2.2. PSD Confusion Network based CM

Table 3 compares the confusion network based CM generated from
the PSD CTC lattice and the FSD CTC or FSD HMM lattices.

Table 3. Comparison of confusion network based CM
AM Decoding CM NCE

DNN-HMM FSD CN 0.172

LSTM-CTC
FSD CN 0.019

PSD CN 0.224
AC+CN 0.230

Result shows that although CN based confidence performs well
in CD-state-HMM model (the result is consistent with previous
works [10][9]), it can not be directly applied to CI-phone-CTC mod-
el. This is also due to the blank allocation problem. In contrast,
CN based CM can be easily applied to PSD CTC phone lattice and
achieve significantly better confidence score. Moreover, the NCE
result is also significantly better than the CD-state-HMM system.
We believe it is because the CTC lattice contains more competing
information, as showed in Figure 5.

When the PSD phonemic acoustic confidence (PN2⊕PN3⊕PC in
Table 2) and the CN based confidence are combined together (deno-
tated as AC+CN), the performance can be further improved. It shows
that the two types of CM are complementary as the previous one is a
local CM while and the latter one is calculated using global utterance
information.

5. CONCLUSION

In this paper, the potential of compact and precise PSD CTC lat-
tice in preserving acoustic information was utilized to form better
CMs. Phone synchronous phonemic acoustic confidence was pro-
posed with elaborate phonemic normalization and blank informa-
tion. Besides, the characteristics of lattice and confusion network
generated from PSD framework were carefully investigated and con-
fusion network based CTC lattice confidence was proposed. In ex-
periments, both CMs achieve significantly better results compared
to their competitors both in HMM and CTC. In addition, the two
types of CMs can be combined together as a pair of complements.
Future work includes applying proposed CMs as predictors in model
training framework [6][7].

6. RELATION TO PRIOR WORK

Prior CM works all focus on ASR systems based on HMM within the
frame synchronous decoding (FSD) framework. Approaches include
predictor features based CMs [3] and confusion network based CMs
[9][10]. However, for CTC model, due to the introduction of blank
label and different acoustic model distribution[21], direct use of the
previous approaches results in serious CM performance degradation.
This work takes advantage of compact and precise CTC phone lattice
generated from phone synchronous decoding (PSD) and proposes
new predictor features based and confusion network based CMs suit-
able for CTC model. The proposed CMs achieve significantly better
results compared to the traditional FSD CM approaches. Besides,
the detailed analysis of word lattice and confusion network generat-
ed from PSD CTC lattice, will benefit further application based on
it.
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