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DYNAMIC FRAME SKIPPING FOR FAST SPEECH RECOGNITION IN RECURRENT
NEURAL NETWORK BASED ACOUSTIC MODELS

Inchul Song", Junyoung Chung®*, Taesup Kim?, Yoshua Bengio®*'

!Samsung Advanced Institute of Technology, Republic of Korea
2MILA, Université de Montréal, Canada
inchul2.song @samsung.com, {junyoung.chung,taesup.kim,yoshua.bengio} @umontreal.ca
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= Motivation
= Framework
m Using state alignment
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m Motivation
m Framework
s Method

m Policy gradients (for future decision)
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m Stack feature?

m Better using alignment? (label delay)

m Better criteria?

m Sequence (long temporal) criteria?




SEQUENCE-TO-SEQUENCE ASR OPTIMIZATION VIA REINFORCEMENT LEARNING

Andros Tjandra', Sakriani Sakti"?, Satoshi Nakamura'*

I Graduate School of Information Science, Nara Institute of Science and Technology, Japan
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= Motivation
m Sequence level criterion deriving from RL
= Method
m Agent: S2S model;
m State: context & hidden state in S2S;
m Action: output label set

mo(ailse) = Py by ™, ™ 0) = Pysly<i,x™;6)

m Reward: WER variants

VoFEy [R(”)\Wg] = Vo /P(y|x(n);6’)R(n) dy
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m Motivation: sequence level criterion deriving from RL
= Method

Agent: S2S model;
State: context & hidden state in S2S;

Action: output label set

Reward: WER variants
m change to temporal distributed reward

VoFEy [R(n)|7r9] =V /P(y|x(n);9)R(n) dy
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m Motivation: sequence level criterion deriving from RL
= Method

Agent: S2S model;

State: context & hidden state in S2S;
Action: output label set

Reward: WER variants

m change to temporal distributed reward: whether
becomes worse
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m Motivation: sequence level criterion deriving from RL

= Method
m Comparison with "Minimum Risk Training for Neural Machine

Translation”
VoFEy [R(n)|7r9] = Vo [P(y|x(n);6’)R(n) dy

Loen(x,y") =EW(y,y)] = »_ PEx)W(y,y")

s Sampling method lz
= Reward construction y.cBeam(x,N)

[W(yi,y*) — W] v
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ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION
MODELING

Amit Das*, Jinyu Li, Rui Zhao, Yifan Gong

Microsoft Al and Research, One Microsoft Way, Redmond, WA 98052

s Motivation:
= 1. hard align -> soft align
m 2. change modeling but not criterion
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Method

1. Chunk based

2. time convolution to obtain g_t
3. output z_u to replace h_u in obtaining attention weight
\alpha

4. diff weight \alpha for diff dimension of g_t

5. Add language model as a “decoder”
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= WER Results
m Result 1: single letter CTC: 23.29 - 18.49
m Result 2:

E2E Model WER (
Vanilla  Attention

single-letter 17.54 14.30
double-letter | 15.37 12.16
triple-letter 13.28 11.36

m Result 3:

mixed (OOV: word + triple-letter) CTC 9.32
mixed (OOV: word + triple-letter) attention CTC 8.65




SUPERVISED NOISE REDUCTION FOR MULTICHANNEL KEYWORD SPOTTING

Yiteng (Arden) Huang, Thad Hughes, Turaj Z. Shabestary, Taylor Applebaum

Google Inc., USA

{ardenhuang, thadh, turajs, applebaum}@google.com

= Motivation
m Baseline
m per-channel energy normalization (PCEN)
m 2-channel adaptive noise cancellation (ANC)

E(jw,m) £ X1(jw,m) —h" (jw, m)x2(jw, m)

m Decide noise or speech based on 1-pass KWS result

m If speech - ANC succeeds to get clean speech - do not
change filter coefficients

m If noise > ANC fails to clean the speech - change
coefficients and double check KWS

12

pts
3 ESN
2 ™
2 &




MULTI-MICROPHONE NEURAL SPEECH SEPARATION FOR FAR-FIELD
MULTI-TALKER SPEECH RECOGNITION

Takuya Yoshioka, Hakan Erdogan, Zhuo Chen, Fil Alleva

Microsoft Al and Research, One Microsoft Way, Redmond, WA

m Spectral and spatial inputs:
s The magnitude spectra
m Inter-microphone phrase diff (IPD) to the first one
m Mask-driven beamforming outputs (separate ASR)
m Mask-driven MVDR beamforming
s Gain adjustment
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EFFICIENT INTEGRATION OF FIXED BEAMFORMERS AND SPEECH SEPARATION
NETWORKS FOR MULTI-CHANNEL FAR-FIELD SPEECH SEPARATION

Zhuo Chen, Takuya Yoshioka, Xiong Xiao, Jinyu Li, Michael L. Seltzer, Yifan Gong

Microsoft Al & Research, One Microsoft Way, Redmond, WA, USA

Beam prediction

m the best beam is related to both target and interfering
speakers (cannot directly use DOA information)

m CE between N-hot selection vector and prediction (N spks)

Multi-view PIT
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